Covid19 world Data, published by John Hopkins CSSE

Metadata quality: 0.7777777777777778/1
Metadata quality:
Data description filled
Resources documented
License filled
Update frequency not followed
File formats are open
Temporal coverage not set
Spatial coverage filled
Updated on 8 de abril de 2020 — License Not Specified

Gisaïa

Gisaïa édite la solution open source ARLAS d’exploration et d’analyses Géo Big Data,. ARLAS permet d’accéder rapidement et simplement à de gigantesques volumes de données. Rapide à mettre en place, modulable et efficace, elle s’adapte à tout système d’information déjà en place et au volume de…

1 datasets
1 reuses

Informations

Licencia
License Not Specified
ID
5e8dec8bbfca232d110c02b5

Temporality

Frequency
Diario
Fecha de creación
8 de abril de 2020
Latest resource update
8 de abril de 2020

Geographic dimensions

Territorial coverage granularity
País

Embed

Permalink

Descripción

Chaque jour, le John Hopkins CSSE publie quotidiennement les données des cas confirmés, guéris et décédés dans le monde, sur le dépôt Github .

Gisaïa réutilise ces données pour son affichage dans ARLAS Exploration .

Terms of Use from the Johns Hopkins CSSE: This GitHub repo and its contents herein, including all data, mapping, and analysis, copyright 2020 Johns Hopkins University, all rights reserved, is provided to the public strictly for educational and academic research purposes. The Website relies upon publicly available data from multiple sources, that do not always agree. The Johns Hopkins University hereby disclaims any and all representations and warranties with respect to the Website, including accuracy, fitness for use, and merchantability. Reliance on the Website for medical guidance or use of the Website in commerce is strictly prohibited.

Files 1

Community resources 0

You have built a more comprehensive database than those presented here? This is the time to share it!

Reutilizaciones 6

Explore the reuses of this dataset.

Did you use this data ? Reference your work and increase your visibility.

Discussion between the organization and the community about this dataset.