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 « Optimouv » :
Optimisation des déplacements dans l’organisation des rencontres sportives

I- Description générale
Généralités
Dans le cadre de la COP21, le dispositif « Optimouv » a été lancé officiellement le 4 décembre 2015 par le Secrétaire d’Etat aux Sports, Monsieur Thierry BRAILLARD.
L’objectif recherché de cet outil est la réduction du nombre de kilomètres parcourus par les clubs et les pratiquants sans réduire le nombre de rencontres sportives. Il s’agit d’un outil d’aide à la décision permettant de proposer des scenarii d’organisation des rencontres sportives optimisant les déplacements.

Avec plus de 2,5 millions de rencontres sportives chaque année soient 50 000 par semaine, l’économie possible est loin d’être négligeable et permettrait ainsi une démarche économique avec la baisse des frais de transport, une démarche de santé avec la baisse de la fatigue liée au transport, une optimisation du temps de pratique par rapport au temps de transport et enfin une démarche environnementale avec la baisse des émissions de gaz à effet de serre.

II- Présentation de l’outil applicatif

Le logiciel Optimouv propose des solutions d’organisations des compétitions par des choix du lieu de rencontres optimisés au regard des déplacements tout en tenant compte des contraintes sportives. Cet outil informatique est un outil d’aide à la décision à disposition de l’ensemble des instances sportives organisant les compétitions et les rassemblements, les fédérations, les ligues régionales, les comités départementaux notamment.
La Fédération Française de Basketball (FFBB) et le Ministère chargé des sports, en partenariat avec l’ADEME et le WWF, ont collaboré à l’étude et au développement de cet outil.  Découvrez la vidéo de présentation sur http://www.ffbb.com/video-optimouv-quest-ce-que-cest


III- Algorithme Optimouv

IV- [bookmark: _GoBack][image: Texte de remplacement généré par une machine :
Stochastic Optimization for Pool Assignrnent 
Problem statement 
Let D 1 be the number of pools and M be the size of each pool. 
Supposc wc havc N M x D teams indcxcd by l, 
N, the distance 
(in km Say) between teams i and j being denoted by ô, 
O for any 
N F (obsewe incidentally that ô, i 
These numerical values are stored in the N x N (Symmetric) distance matria; 
Parametrization. Any pool assignment of the team population (1 
is described by a N x N (symmetric) matrix P — 
defined as 
follows. E (1, 
pi o +1 if i and belong to the same pool and pi o 0 otherwise. 
Equiped With this notation, for 1 i, j N, we have p, o and we set 
0 by convention. Obscrw also that a.ny pool assignment matrix fulfills 
the following propert.y: Vi E (l, 
Morc gencrally, the constraints sat'sficd by any pool assignmcnt matrix can 
be formulated by means of notions perta.ning to Graph theory: the teams 
N forming the nodes of an undirected graph G, team i is connected 
to team J if i and j belong to the same pool. The matrix P is then the 
adjacencv matri:r of G, ench node has degree M — 1 so that the degree 
matrix Ap of P is 
(M - 1)1dN, 
denoting by IdN the N x N identity matrix. The graph G can be partitioned 
in D cliques (i.e. fullv connected or complete subgraphs, a subgraph G' being ]
V- [image: Texte de remplacement généré par une machine :
said to be Jully connected if there a vertex connecting any pair of nodes of 
G') Of size AI _ The normalised Laplacian matrix L related to P is then given 
In tcrms of spectral pmpcrtaes, thc condition stipulating that thc graph G 
Of adjacency matrix F' Can be partitioned into D connected components 
Gn is equivalent. to that stipulating that 0 is a singular value of 
multiplicity D for the matrix V. The distance matrix P can also be viewed 
as a weight matric for G (ô, ü wcighting thc vcrtcx). wc dcnotc by p thc 
set of pool assignment matrices. One may easily prove that it is the set of 
N x N adjacency matrices With (M — 1)IdN as degree matrix and for which 0 
's a smgular value of multiplicity D for its normalised Laplacian V. Indeed, 
sinoc — (M — l) IdN, cach component cardinality argcr 
than M. Since there are D connected components and N DM nodes 
all connected components have size M exactly and are thus complete (using 
again that Ap (M — 1)IdN). 
A straightforward combinat.orial computation also shows that the num- 
bcr of possible assignmcnt pools (in absence of constraints cxccpt thc sizc 
contraints (D, M)) is givcn by: 
x and — m)!) for any nonncgativc 
whcrc m! —l x 2x 
integers m q. As D and M become small both at the same time compared 
to N, becomes rapidly very large (making loops over p hardly feasible 
in practice). 
Remark 1 (GENERATING A POOL ASSIGNAIENT) As illustrated by the for- 
mula above, it is not straight.forward to generate and a sequential procedure 
is rcquircd in gcncral: sclcct first M tcams among thc N DM tcams by 
drawing without replacement. Next, in the complementary set, draw without 
replacement M teams, etc. 
Optimization problem. For a given pool assignment P p and a two- 
leggcd tic championshlp, thc total cost (in tcrms of distance travcllcd ex- 
pressed in km) is given by ][image: Texte de remplacement généré par une machine :
d
2
0
][image: Texte de remplacement généré par une machine :
P,.k and T, AP). k 
- for 
GAP), J -O. 
This transformation is P.The neighbourhood Of 
any pool assignment matrix P e p is defined as 
.V(P) — Ino(P): 
We have (P) M2D(D — 1)/2 for any P e P and one says that P is 
a neighbour Of P if P' N (P) (observe that this relationship is symmetric 
Since P' Tiù(P) P The sequence generated will be such 
that for all I and will so that its 
limit distribution coinc.des With the target distribution, i.e. the uniform 
distribution on argminecp V. 
Simulated Annealing. The Simu ated Annealing method for building a 
(time-inhomogeneous Markov) sequence fulfilling (G) involves a (tempera- 
turc) paramctcr T(n) O, which dccrcxqe.; "s thc nllmbcr Of it.crations n 
grows. In practice, T(n) decreases in a stepwise mariner. Given a cooling 
schedule T it Can be implemented by meanS Of the pseudo-code below: 
• (Initialization) Select at random p (1) in p 
• (Itérations) for I to 
1. Draw at random a pair (i, j) s.l. i and pi".) 
Lhe neighbour 
2. Compute 
— — V(PW) 
0 and consider 
3. If O (i.e. the cœ;t Of is than that Of the 
current poo assignment), set 
If AVn » O (the 
eurrent configuration is better than draw a r. v. U (n) 
uniformly distributed on (0, 1). If set 
T, (PI")) and set P (0+1) p(") otherwise (this happens 
With probability 1 — ][image: Texte de remplacement généré par une machine :
(Output) Pool assignrnent O. 
Thc choicc of the initial value p (fi) and that of thc cooling schcdulc have 
a strong ilnpact on the performance Of the algorithm. ln practice, one runs 
in parallel the algorithm With varions/nnmerons configurations (adaptative 
cooling schedules can also be considered). ln addition one may consider an 
early stopping condition if V (p(n)) stops significantly decreasing after a large 
number of iterations (to be fixed by the user) 
Remark 3 (ON THE CHOICE OF THE METHOD) Aletrnative metahenristics 
could be considered for solving approximately (3) (deterministic approaches 
in particular). Howcvcr, results of t e type of (6) are not availablc for de- 
terministic techniques. Exp oring the paramet.er space p in a stochast..c (i. 
random) manncr is known to bc vcry cfficicnt and widcly uscd in a largc vari- 
ety of applications (ranginz from mechanical statistics to operations research 
through network optimization since the eighties. Theoretical foundations 
for the simulated annealing have been set in the early 90's. For a fixed 
temperature T (i.e. T independent from n), the algorithm above is known 
as thc Mctropolis-Hastings algorithm and the (time-homogcncons) Markov 
chain thlas generated converges to the Gibbs measure: (l/ Z) 
where Z is a normalization constant. Computation 
of Z, and thus direct sampling from this distribution, is unfeasible in practice 
sincc it involvcs a summation ovcr p, This is Why a Markov Chain Montc 
Carlo (MCMC) procedurc IS requ.rcd. The pool assignmcnts wit louvvst 
cost are the modes of this distribution and as T decreases t e distribution 
becomes more and more concentrated around Its modes. The rationale be- 
hind the change Of the progresive change Of telnperature in the simulated 
anncaling approach 's to avoid bcing trappcd in local minima: an incrcasc 
of the cost may occur With a probability increasing With the pararneter T in 
order to explore the space (if T is very large, a ot of fluctuations are possible 
whereas V (IX")) is monotonous/decreasing With probability I if T 0), 
Remark 4 (COOLING SCHEDULE) In practice, one picks a high initial tem- 
perature 1'(0) and make it decrease in a stepwise manner (the number Of 
steps and the number of iterations related to cach step are tuning parame- 
ters Of the schedule). When the output Of the algorithm stops fluctuating 
convcrgcncc" ) 
onc stops if, at iteration say and "restarts" thc algorithm 
With — and the same cooling schedule, and so on and so forth. ]
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said to be fully connected if there is a vertex connecting any pair of nodes of
G") of size M. The normalised Laplacian matrix L related to P is then given

by

V=aiiar - pagtt

In terms of spectral propertics, the condition stipulating that the graph G
of adjacency matrix P can be partitioned into D connected components
G, ..., Gp is equivalent to that stipulating that 0 is a singular value of
multiplicity D for the matrix L'. The distance matrix D can also be viewed
as a weight matriz for G (8, weighting the vertex). We denote by P the
set of pool assignment matrices. One may easily prove that it is the st of
N x N adjacency matrices with (M —1)Idy as degree matrix and for which 0
is a singular value of multiplicity D for its normalised Laplacian L', Indeed,
since Ap = (M — 1)Idy, each connected component has cardinality larger
than M. Since there are D connected components and N nodes,
all connected components have size M exactly and are thus complete (using
again that Ap — 1)Idy).

A straightforward combinatorial computation also shows that the num-
Dber of possible assignment pools (in absence of constraints except the size
contraints (D, M)) is given by:

M ) )

e
W”HH M(D —k+1),

1x 2% % m and (%) = ql/(ml(g = m)!) for any nomnegative
integers m < ¢. As D and M become small both at the same time compared
to N, #P becomes rapidly very large (making loops over P hardly feasible
in practice)

Remark 1 (GENERATING A POOL ASSIGNMENT) As illustrated by the for-
mula above, it is not straightforward to generate and a sequential procedure
s required in general: scloct first M teams among the N = DM teams by
drawing without replacement. Next, in the complementary set, draw without
replacement M teams, ele.

Optimization problem. For a given pool assigmment P € P and a two-
legged tie championship, the total cost (in terms of distance travelled ex-
pressed in k) is given by

V(P)= 37 Gums=2 Y fipy=Tr(DP) &)
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where T'r(A) = S a, ¢ denotes the trace of any square matrix A = (a; )1 j<x.
The goal pursued is to find a pool assignment P minimizing V(P), that is
to solve:

minV(P) @)

As this problem is N P-hard, one should consider a meta-heuristic to find an

approximate solution when 4P is large.

Remark 2 (FAIRNESS CONSTRAINTS) Denoting by Gy (P), ..., Gp(P) the
pools defined by the adjacency matrix P ie. the D maximal cliques of
the related graph), the distance travelled for the pool d € {1, ..., D} is
ValP) = S yecupp g+ In order to avoid sitnations of imbalance among
the pools (in’terms of distance travelled), it may be desirable to consider
assignments P fulfilling a condition of the type: (d,d') € {1. ..., D}?,

<l+e (5)

the tuning parameter ¢ ruling the fairess constraint being picked by the
user.

Stochastic optimization

We suggest to use a stochastic algorithm to explore the (possibly very
large) parameter space P and find an approximate solution of (4). In prac-
tice, we shall generate a sequence PO, P2, . such that,

(Pl " .
V(PY) S pin V(P) as > o, (©)

in a stochastic sense,

Transitions. As a first go, we start with introducing additional definitions
and notations. Consider P € P and a pair {i,j} C {1, ..., N} of teams
in different pools, i.e. such that p,, = 0. We denote by 7,(P) the pool
assignment matrix obtained by switching the pools assigned to i and j. This
simply boils down to switching rows (respectively, columns) i and j in P:

TPy = Pufork, 1 {i.j},
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Tig(Pis = Pigand 7i5(P)jx = P for k ¢ {i, j}
TPl = 7y(P)js = 115(P)iy = 0.

This transformation is involutive: 7,,(7;(P)) = P.The neighbourhood of
any pool assignment matrix P € P is defined as

N(P)={r,(P): 1<i<j <N, py=0}

We have #A'(P) = M?D(D —1)/2 for any P € P and one says that P’ is
a neighbour of P if P’ € N'(P) (observe that this relationship is
since P’ = 7,,(P) & P = 7,,(P")). The sequence generated will be such
that PU+1 € A(P™) for all n > 1 and will be constructed so that its
limit distribution coincides with the target distribution, i.e. the uniform
distribution on argminpep V.

ymetric

Simulated Annealing. The Simulated Annealing method for building a
(time-inhomogencous Markov) sequence fulfilling (6) involves a (tempera-
ture) parameter T(n) > 0. which decreases as the number of iterations n
grows. In practice, T(n) decreases in a stepwise manner. Given a cooling
schedule T(n), it can be implemented by means of the psendo-code below

o (Initialization) Select at random P in P

« (Itérations) for n = 10 ner.

)

{1 = 0 and consider

L. Draw at random a pair (i,j) s.4. i < j and p|
the neighbour 7,;(P™)

2. Compute
AV, = V(r,(P™) - V(P™)
D s+ 2) + D 0=y + o)

2 %

3. 10AV, < 0 (ie. the cost of 7,,(P™) is less than that of the
current pool assignment), set PV = 7,,(P™). If AV, > 0 (the
current, configuration is better than 7, ,(P(")), draw a r.v. U
uniformly distributed on (0.1). 1If U < exp(—~AV, /T(n)). set
P = 7 (P)) and set. P+ = P otherwise (this happens
with probability 1 - exp(~ AV, /T(n)
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« (Output) Pool assignment =)

The choice of the initial value P and that of the cooling schedule have
a strong impact on the performance of the algorithm. In practice, one runs
in parallel the algorithm with various/mumerous configurations (adaptative
cooling schedules can also be considered). Tn addition, one may consider an
early stopping condition if V' (P™) stops significantly decreasing after a large
number of iterations (to be fixed by the user),

Remark 3 (ON THE CHOICE OF THE METHOD) Aletmative metaheuristics
could be considered for solving approximately (3) (deterministic approaches
in particular). However, results of the type of (6) are not available for de-
terministic tech
random) manner is known to be very efficient and widely used in a large vari-
ety of applications (ranging from mechanical statistics to operations rescarch
throngh network optimization) since the eighties. Theoretical foundations
for the simulated annealing have been set in the carly 90's. For a fixed
temperature T (ie. T independent from n). the algorithm above is known
as the Metropolis-Hastings algorithm and the (time-homogencons) Markov
chain thus generated converges to the Gibbs measure: (1/2) exp(~V(P)/T).
where Z = $2p.p ep(~V(P)/T) is a normalization constant. Computation
of Z. and thus direct sampling from this distribution, is unfeasible in practice
since it nvolves a summation over P. This is why a Markov Chain Monte
Carlo (MCMC) procedure is required. The pool assignments with lowest
cost are the modes of this distribution and as T decreases the distribution
becomes more and more concentrated around its modes. The rationale be-
hind the change of the progressive change of temperature in the simulated
anmealing approach is to avoid being trapped in local minima: an increase
of the cost may oceur with a probability increasing with the parameter 7 in
order to explore the space (if T is very large, a lot of fluctuations are possible.
whereas V(P() is monotonous /decreasing with probability 1if T = 0).

iques. Exploring the parameter space P in a stochastic (i.¢.

Remark 4 (COOLING SCHEDULE) Tn practice, one picks a high initial tem-
perature T(0) and make it decrease in a stepwise manner (the number of
steps and the mumber of iterations related to cach step are tuning parame-
ters of the schedule). When the output of the algorithm stops fluctuating
("convergenc”). one stops it, at iteration ny say and "restarts” the algorithm
with P = P(") and the same cooling schedule, and so on and so forth.
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Stochastic Optimization for Pool Assignment

Problem statement

Let D > 1 be the number of pools and M be the size of each pool.
Suppose we have N = M x D teams indexed by i = 1, ..., N, the distance
in km say) between teams i and j being denoted by &5 = 8, > 0 for any
(i,j) € {1 ..., NY* (observe incidentally that §,; = 0 for 1 < i < N).
These numerical values are stored in the N x N (symmetric) distance matriz

D= (Bihsisen

Parametrization. Any pool assigument of the team population (1. ... N}
s described by a N x N (symmetric) matrix P = (p,,)<qjen defined as
follows: ¥(i,§) € {1,

iy = +1if i and j belong to the same pool and p,; = 0 otherwise.

Equiped with this notation, for 1 < i, j < N, we have p,, = p,, and we set
i = 0 by convention. Obscrve also that any pool assignment matrix fulfills
the following property: Vi € {1, ..., N}

Shi=M-
=

More generally, the constraints satisficd by any pool assignment matrix can
be formulated by means of notions pertaining to Graph theory: the teams
1. ..., N forming the nodes of an undirccted graph G. team i is connected
to team j if  and j belong to the same pool. The matrix P is then the
adjacency matriz of G, each node i has degree M — 1 0 that the degree
matrir Ap of Pis

8]

Ap

—1)Idy

denoting by Idy the N x N identity matrix. The graph G can be partitioned
in D cligues (i.e. fully connected or complete subgraphs, a subgraph G' being
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